An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers

نویسنده

  • Amel Alhussan
چکیده

Bayesian network (BN) classifiers use different structures and different training parameters which leads to diversity in classification decisions. This work empirically shows that building an ensemble of several fine-tuned BN classifiers increases the overall classification accuracy. The accuracy of the constituent classifiers can be achieved by fine-tuning each classifier and the diversity is achieved using different BN classifiers. The proposed ensemble combines a Naive Bayes (NB) classifier, five different models of Tree Augmented Naive Bayes (TAN), and four different model of Bayesian Augmented Naive Bayes (BAN). This work also proposes a new Distance-based Diversity Measure (DDM) and uses it to analyze the diversity of the ensembles. The ensemble of fine-tuned classifier achieves better average classification accuracy than any of its constituent classifiers or the ensemble of un-tuned classifiers. Moreover, the empirical experiments present better significant results for many data sets. Keywords—Ensemble classifier; Bayesian Network (BN) classifiers; Fine-tuned BN classifiers; Stacking; Diversity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include...

متن کامل

A Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers

Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...

متن کامل

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017